Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Carbonneau, R., Laframboise, K., & Vahidov, R. (2018). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140–1154. https://doi.org/10.1016/j.ejor.2006.12.004
Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM. https://doi.org/10.1145/2939672.2939785
Chopra, S., & Meindl, P. (2016). Supply chain management: Strategy, planning, and operation (6th ed.). Pearson Education.
Choudhury, S., Singh, R., & Kumar, A. (2022). Predicting delivery delays in e-commerce supply chains using gradient boosting models. International Journal of Production Research, 60(18), 5560–5575. https://doi.org/10.1080/00207543.2021.2011442
Constante, F., Silva, F., & Pereira, A. (2019). DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS [Data set]. Mendeley Data. https://doi.org/10.17632/8gx2fvg2k6.5
Davis-Sramek, B., Hopkins, C. D., & Richey, R. G., Jr. (2023). The new dynamics of customer service: Satisfaction and retention in the age of e-commerce. Journal of Business Logistics, 44(1), 57–80. https://doi.org/10.1111/jbl.12296
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
Fierro, A., Tordecilla, R. D., Juan, A. A., & Serra, I. (2018). A simheuristic algorithm for stochastic inventory routing problems in e-commerce. In Proceedings of the 2018 Winter Simulation Conference (pp. 3256–3267). IEEE. https://doi.org/10.1109/WSC.2018.8632295
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
Gzara, F., Su, J. S., & Nasiri, M. M. (2023). Designing e-commerce logistics networks for time-definite delivery. Transportation Research Part E: Logistics and Transportation Review, 170, 103010. https://doi.org/10.1016/j.tre.2022.103010
Ho, T. K. (1995). Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition (Vol. 1, pp. 278–282). IEEE. https://doi.org/10.1109/ICDAR.1995.598994
Huang, B., Li, Q., Zhao, X., & Zhong, Y. (2019). A data-driven approach to identify critical factors affecting delivery time for truckload shipments. Transportation Research Part E: Logistics and Transportation Review, 128, 289–305. https://doi.org/10.1016/j.tre.2019.06.011
Li, B., Wang, X., & Wang, S. (2021). Dynamic delivery time quotation in e-commerce considering customer behavior. Electronic Commerce Research and Applications, 45, 101015. https://doi.org/10.1016/j.elerap.2020.101015
Li, J., Zhang, Z., & Wang, Y. (2019). A hybrid LSTM-XGBoost model for delivery time prediction in supply chain management. Expert Systems with Applications, 136, 1–10. https://doi.org/10.1016/j.eswa.2019.06.012
Lin, C. C., Chen, C. W., & Chen, C. Y. (2019). A machine learning approach for routing optimization with heterogeneous delivery fleet. International Journal of Production Economics, 215, 63–75. https://doi.org/10.1016/j.ijpe.2018.07.005
Liu, X., Liu, Y., Liu, N., & Zhang, J. (2023). Data-driven robust aggregate production planning considering delivery time and demand uncertainty. International Journal of Production Economics, 257, 108742. https://doi.org/10.1016/j.ijpe.2023.108742
Mahmoud Jaafarnejad, S., Sorkheh, B., Bavrsad, & Neysi, A. H. (2025). Investigating and ranking the factors affecting integrated supply chain performance in context of Industry 4.0 by using fuzzy ANP method. Management Science and Information Technology, 2(1), 70–89.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (5th ed.). Wiley.
Nguyen, T. T., Pham, H. T., & Le, D. T. (2021). Machine learning-based delivery time prediction in logistics IoT systems. IEEE Access, 9, 123456–123469. https://doi.org/10.1109/ACCESS.2021.3105562
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37–63.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/BF00116251
Samvedi, A., & Jain, V. (2018). Time series based approach to predict supply chain lead time. Journal of Manufacturing Technology Management, 29(1), 108–130. https://doi.org/10.1108/JMTM-03-2017-0049
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
Wang, X., Li, X., & Leung, S. C. (2019). Home delivery service: Impact of delivery performance and customer satisfaction. International Journal of Production Economics, 208, 526–536. https://doi.org/10.1016/j.ijpe.2018.12.010
Wu, C., & Chen, Y. (2020). Delivery delay prediction in courier services using decision trees and random forests. Transportation Research Part E: Logistics and Transportation Review, 138, 101959. https://doi.org/10.1016/j.tre.2020.101959
Yu, Y., Wang, X., & Zhong, R. Y. (2017). E-commerce logistics in supply chain management: Practice perspective. Procedia CIRP, 52, 179–185. https://doi.org/10.1016/j.procir.2016.11.002