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Objective: With an emphasis on evaluating delivery lead times and anticipating late
delivery risks, this study investigates the application of machine learning models to
anticipate delivery performance in the e-commerce industry.

Methods: The DataCo Smart Supply Chain dataset, which contains a variety of order
fulfillment attributes, was used to train and evaluate several models, including Linear
Regression, Decision Tree, Random Forest, and XGBoost.

Results: The results demonstrate that XGBoost outperforms competing models in both
regression and classification tests. The model achieved an R-squared value of 0.70 and a
root mean square error (RMSE) of 0.88 days in forecasting delivery lead time. The
categorization of late delivery risk achieved an accuracy of 0.89, precision of 0.92, recall
of 0.89, and an F1-score of 0.90. The analysis of feature importance revealed that the
chosen shipping method is the foremost predictor of both delivery time and the likelihood
of late delivery, followed by order status and latitude for predicting late delivery risk, and
latitude in conjunction with cycle time features for predicting delivery time.

Conclusion: These findings underscore the significant potential of machine learning to
enhance delivery performance predictions in e-commerce, enabling companies to set
realistic delivery expectations, optimize logistics operations, and proactively mitigate the
risk of late deliveries. This research enhances the domain of data-driven supply chain
management and emphasizes the importance of accurate delivery predictions for success
in the competitive online retail landscape.
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1. Introduction

The swift growth of e-commerce has transformed worldwide retail practices, rendering effective order fulfillment
crucial for corporate success. As digital supply chains expand under Industry 4.0 frameworks, managing the
dynamic interactions among logistics, inventory, and delivery systems has become increasingly complex
(Jaafarnejad, Sorkheh, Bavrsad, & Neysi, 2025). Consequently, the risk of late deliveries has emerged as a critical
challenge that directly impacts customer satisfaction, operational efficiency, and overall competitiveness. Late
deliveries not only erode consumer trust but also increase financial losses, emphasizing the importance of predictive
models capable of proactively identifying and mitigating delivery delays. The delivery lead time, the interval from
order placing to receipt has emerged as a critical performance parameter, significantly impacting customer
satisfaction, loyalty, and long-term profitability (Chopra & Meindl, 2016; Davis-Sramek et al., 2023). Delayed
delivery may lead to brand harm, customer attrition, and monetary loss, especially in fiercely competitive digital
marketplaces (Wang et al., 2019; Yu et al., 2017).

Notwithstanding its importance, numerous e-commerce enterprises continue to depend on rudimentary or
heuristic approaches for calculating delivery times. These conventional methods frequently overlook intricate
interrelations across variables, including shipment mode, client location, product type, and carrier performance
(Samvedi & Jain, 2018). The increasing accessibility of detailed, real-world logistics data offers a chance to create
more precise and anticipatory delivery forecasting models (Li et al., 2021; Gzara et al., 2023). Recent research has
investigated the use of machine learning (ML) for predicting delivery performance. Studies have shown the efficacy
of machine learning in demand forecasting (Carbonneau et al., 2018), route optimization (Lin et al., 2019), and delay
detection (Huang et al., 2019). Nonetheless, current research frequently fails to achieve thorough integration of
many variables or practical logistical situations. Moreover, issues such as data imbalance, multicollinearity, and
insufficiently examined feature interactions persist inadequately addressed (Fierro et al., 2018; Liu et al., 2023).

1.1 Related Work

Recent studies have demonstrated the growing use of machine learning for logistics forecasting. Choudhury et
al. (2022) used gradient boosting to predict delivery delays in e-commerce, achieving high accuracy but
without evaluating feature interpretability. Nguyen et al. (2021) applied XGBoost and CatBoost within 1oT-
based logistics networks but did not integrate temporal encodings or ensemble models. Wu and Chen (2020)
implemented decision trees and random forests for courier delay prediction, focusing mainly on categorical
routing data. Li et al. (2019) introduced a hybrid LSTM-XGBoost model but required heavy computation
unsuitable for real-time order management. Compared to these works, our study introduces an end-to-end
pipeline that jointly models delivery lead time and late delivery risk using interpretable ensemble approaches
and cyclical temporal features, addressing prior gaps in model explainability and operational generalization.

While previous works primarily addressed isolated predictive tasks or required complex architectures, this study
bridges that gap by proposing a unified framework that jointly forecasts delivery lead time and late delivery risk
using interpretable machine learning models. Our contributions include (1) a standardized data processing and
modeling pipeline for logistics datasets, (2) a comparative evaluation of ensemble methods on a large-scale dataset,
and (3) a feature-importance-driven analysis revealing actionable operational insights.

This research addresses these deficiencies by utilizing the real-world DataCo Smart Supply Chain dataset
(Constante et al., 2019) comprising comprehensive transactional, demographic, and logistical attributes. We assess
multiple machine learning algorithms to forecast delivery lead times and the risk of late deliveries. In this process,
we not only evaluate predicted performance but also ascertain the most significant features influencing delay
patterns. The contributions of this study are threefold: (1) performing a comprehensive analysis of an end-to-end
machine learning pipeline utilizing a large-scale e-commerce dataset; (2) presenting a comparative assessment of
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model performance across essential metrics; and (3) extracting actionable insights to facilitate operational decision-
making in e-commerce logistics. The findings seek to assist online merchants in enhancing delivery precision,
optimizing fulfillment processes, and improving customer experience in time-sensitive markets.

2. Dataset and Methods
2.1 Dataset

This study utilizes the publicly available DataCo Smart Supply Chain for Big Data Analysis dataset (Constante et
al., 2019), which contains comprehensive transactional records from a global e-commerce platform. The dataset
contains 180,519 entries and 53 variables, offering a thorough foundation for analyzing and modeling the e-
commerce order fulfillment process. It includes all aspects of supply chain activities, such as product attributes,
order details, customer profiles, geographic information, delivery methods, and financial metrics. This research
delineates two principal objective factors. Days for Shipping (Real) is a continuous variable representing the actual
number of days needed to deliver an order, serving as the target for regression tasks aimed at predicting delivery
lead time. Second, late delivery risk is a binary classification variable indicating whether an order is at risk of late
delivery (1) or not (0), making it suitable for the creation of classification models.

A total of 51 predictor variables were assessed and categorized into various functional groups. Order-related
features include unique order and item identifiers, quantities, order status, placement date, and calculated profits.
Product attributes include cost and availability status. The category and department fields define hierarchical
relationships via category IDs, names, and department identifiers. Customer location and market features include
market region, area, country, and geographical coordinates, such as latitude and longitude. Transportation attributes
include the mode of conveyance and final delivery condition. Financial variables encompass measures such as profit
per order, sales value, discount rate, product prices, and item-level profit margins. This comprehensive dataset
enables the development of machine learning models to predict delivery timelines and identify at-risk orders,
ultimately enhancing operational efficiency and customer satisfaction in e-commerce logistics.

2.2 Methods

This study establishes a predictive framework for calculating delivery lead time and evaluating late delivery risk
through the application of machine learning techniques to e-commerce transactional data. Individual algorithms and
ensemble models were both implemented and assessed. Figure 2.1 shows the complete workflow of this study.

2.2.1 Data Preprocessing

Missing values in numerical variables specifically Order Item Total, Profit Ratio, Latitude, Longitude, Discount
Rate, Sales, and Product Price were imputed with mean values, presuming that the absence of data was random. For
categorical variables (Market, Category Name, Customer Segment, Department Name, Order Status, Order Region,
Order Country, and Shipping Mode), absent items were substituted with the designation “Unknown” to preserve
potentially useful patterns associated with the missing data.

2.2.2 Numerical Feature Normalization

All numerical predictors were normalized using min—max scaling to the range [0, 1] to prevent features with larger
magnitudes from dominating the model learning process:

X = Xmin (]_)

Xnormalized =
Xmax — Xmin

Where x is the original value, Xmin is the feature’s minimum value, and xmax iS the maximum value.
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Figure 1. End-to-End Machine Learning Pipeline for Delivery Time and Risk Prediction
2.2.3 Categorical Feature Encoding

Label encoding was utilized for categorical variables to diminish dimensionality and computational expense,
considering the elevated cardinality of many features. This method allocates a distinct integer value to each
category, so circumventing the sparsity caused by one-hot encoding.

Label encoding was preferred over one-hot encoding to avoid high-dimensional sparsity, as features such as
‘Order Status,” ‘Market,” and ‘Customer Segment’ contain numerous categories. Since tree-based models (Decision
Tree, Random Forest, XGBoost) are insensitive to integer label ordering, this encoding did not affect performance.

2.2.4 Temporal Feature Engineering

Temporal variables (order_month and order_dayofweek) were transformed into cyclical representations using sine
and cosine functions to capture periodicity without imposing a linear structure:

2w .order_month

monthg;,, = sin 17 2
21 .order_month
month,,s = cos 17 3
2r .order_dayofweek
dowg;, = sin _7 yof 4)
2m .order_dayofweek
dow,,s = cos 7 (5)

2.2.5 Data Splitting

The dataset was partitioned into training (80%) and testing (20%) sets using stratified sampling based on
Late_Delivery_Risk to preserve the class distribution. To ensure robustness, we applied 5-fold cross-validation on
the training set during hyperparameter tuning. Reported metrics correspond to the holdout test set.
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2.2.6 Model Selection

Four algorithms were selected based on predictive performance, interpretability, and suitability for both regression
and classification tasks:

e Linear Regression — Used as a baseline, modeling target—predictor relationships as linear functions
(Montgomery et al., 2012).

o Decision Tree — Captures non-linear relationships and provides interpretable decision paths (Quinlan,
1986).

e Random Forest — Reduces overfitting and improves accuracy by aggregating multiple decision trees
(Breiman, 2001; Ho, 1995).

e XGBoost — A gradient boosting framework optimized for speed, scalability, and regularization (Chen &
Guestrin, 2016).

2.2.7 Training Procedure

Distinct regression models forecasted Days for Shipping (Real), whereas classification models assessed
Late_Delivery Risk. Model instances were initialized using default hyperparameters from the various libraries and
trained on the curated dataset.

2.2.8 Performance Evaluation

Regression models were assessed using the coefficient of determination (R?) and root mean squared error (RMSE).
Higher R?and lower RMSE indicate superior performance:

RZ =1- SSTES (6)
SStot

Where;

SSres = XV — ?i)z (7)

SStor = XV — ¥:)° (8)

Classification performance was evaluated using precision, recall, F1-score, and confusion matrices.
3. Results and Discussion

This study assesses four principal machine learning models: Linear Regression, Decision Tree, Random Forest, and
XGBoost alongside two ensemble configurations for predicting (i) delivery lead time and (ii) late delivery risk
utilizing the DataCo Smart Supply Chain dataset.

3.1 Regression Model Performance

Table 1 summarizes the predictive performance of six regression models for estimating shipping days, measured by
RMSE and R2.

XGBoost demonstrated superior performance among individual models, recording the lowest RMSE (0.88 days)
and the greatest Rz (0.70), signifying exceptional prediction accuracy and robust variance explanation. Random
Forest exhibited a strong performance (R2? = 0.68), but Decision Tree demonstrated moderate efficacy (R = 0.55).
Linear Regression exhibited suboptimal performance (R? = 0.27), indicating the insufficiency of a solely linear
model for this task. The ensemble of Decision Tree, Random Forest, and Linear Regression exhibited superior
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performance (R?

= 0.65) compared to the Random Forest + XGBoost ensemble (R? = 0.58), however, neither

exceeded the performance of XGBoost alone.

Figure 2 compares the actual and expected shipping days for the initial 20 test samples utilizing XGBoost. The
model accurately reflects the actual values, exhibiting little discrepancies, hence illustrating its capacity to capture
temporal fluctuations in shipping duration.

Dray:

(=]

Ln

Lt

FJ

Table 1. Performance comparison of regression models predicting shipping days.

Model RMSE(days) R?
Linear Regression 1.39 0.27
Decision Tree 1.09 0.55
Random Forest 0.91 0.68
XGBoost 0.88 0.70
E_nsemble (Dec_|3|on Tree + Random Forest + 096 0.65
Linear Regression)

Ensemble (Random Forest + XGBoost) 1.05 0.58

Actual vs Predicted Delivery Days
(First 20 Samples)

=~ Actual Days
=~ Predicted Days

15 10.4 125
Sample Index

Figure 2. Performance of the XGBoost Model on Delivery Time Prediction Comparison of Actual vs. Predicted Shipping Days
for the First 20 Samples in the Test Set. Comparison of actual vs. predicted shipping days for the first 20 samples (n = 20) in the
test set. The x-axis represents sample indices, and the y-axis shows the number of shipping days. The close alignment of red

(predicted) and blue (actual) lines indicates strong predictive accuracy.

3.2 Classification Model Performance

Table 2 presents the results for six classification models predicting late delivery risk, evaluated using accuracy,
precision, recall, and F1-score.

XGBoost consistently surpassed all models, attaining the greatest metrics overall (Accuracy = 0.89, F1 = 0.89).
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The Decision Tree exhibited competitive performance (F1 = 0.87), surpassing both Random Forest and ensemble
arrangements. Logistic Regression produced the least favorable outcomes, confirming that the risk of late delivery is
most effectively represented with non-linear, tree-based algorithms.

Figure 3 depicts the confusion matrix demonstrating the XGBoost classifier's effectiveness in forecasting late
delivery risk. The matrix specifies the quantities of true positives (17,530), true negatives (14,772), false positives
(1,535), and false negatives (2,267). The significant number of true positives and true negatives, along with the very
low rates of false positives and false negatives, indicates that the XGBoost classifier is adept at properly classifying
deliveries as either on time or late. The x-axis represents the expected label, whilst the y-axis signifies the actual
label. The intensity of color indicates the sample counts, with deeper shades signifying greater totals. The numbers
in each cell of the matrix represent the exact quantity of samples in each category.

Table 2. Performance comparison of classification models predicting late delivery risk.

Model Accuracy Precision Recall F1-score
Logistic Regression 0.69 0.71 0.70 0.68
Decision Tree 0.87 0.87 0.87 0.87
Random Forest 0.80 0.81 0.81 0.80
XGBoost 0.89 0.90 0.90 0.89
e e ey o0 o om0
Ensemble (Random Forest + XGBoost) 0.74 0.78 0.76 0.74

Confusion Matrix
Late Delivery Pradiction

- 16300

- 14000

- 12300

- 10040

- 2000

- 6000

- 4007

- 2007

Fradicted

Figure 3. Confusion Matrix for Late Delivery Prediction of the XGBoost Model. Matrix visualizing model performance on n =
36,104 test samples. The x-axis denotes predicted labels (On-time, Late), and the y-axis represents actual labels. Color intensity
indicates the count of samples per cell, with darker shades corresponding to higher frequencies.
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3.3 Feature Importance Analysis

The feature importance scores are derived from the XGBoost classification model, which was trained to predict the
probability of delayed delivery. Figure 4 presents a horizontal bar chart illustrating the feature importance scores.
The shipping_mode_encoded feature is the most significant predictor, exhibiting a substantially higher relevance
score than all other features. This indicates that the chosen mode of transportation is the primary determinant of
delivery punctuality. Order Status is the second most important property, behind Latitude. Attributes including
Market, cyclical time encodings (month_sin, Longitude, order_month, dayofweek sin, Order Region, day_sin,
day_cos, month_cos, order_dayofweek), Customer Segment, and Department Name hold substantial importance.
Figure 5 illustrates the feature significance scores derived from the XGBoost regression model for classification
purposes. The significance scores assess the relative impact of each feature in the model's prediction mechanism.
The shipping_mode_encoded attribute is the most significant predictor, demonstrating a substantially higher
relevance score than other factors. This signifies that the selected shipping method for an item is the primary factor
affecting delivery time. Latitude is the second most important characteristic. The characteristics linked to the
cyclical encoding of time (dayofweek_sin, month_sin, day_sin, day_cos, month_cos, dayofweek _cos, order_month,
order_dayofweek) demonstrate considerable significance, indicating that the model has identified patterns relevant
to the day of the week and the time of year. In both models, shipping_mode_encoded is the most consequential
characteristic. This highlights the critical significance of the chosen transportation method in predicting the actual
arrival time and the probability of delays. The Order Status is the second most critical determinant in predicting the
probability of delayed delivery. Both models regard cyclical temporal elements as critically important. This
indicates that the day of the week, month, and even other temporal factors influence delivery performance.

Feature Importance (Classification Model)

shipping_mode_encoded
Order Status

Latitude

Market 4

maonth_sin

Longitude
order_maonth 1
dayofweek_sin

Order Region 4

day_sin |

day_cos

Customer Segment A
dayofweek_cos
manth_cos
order_dayofweek -
Department Name -
Order ltem Quantity -
Sales

Category Name -

Order leem Total o
Order Item Profit Ratio -
Product Price

Order Item Discount Rate -

0.0 01 02 03 04 05 06
Feature Importance

Figure 4. Feature Importance Scores for the XGBoost Classification Model Predicting late delivery risk. Horizontal bar chart
based on n = 180,519 orders in the dataset. The x-axis represents normalized importance scores, and the y-axis lists the top
features ranked by predictive relevance. “Shipping mode (encoded)” emerged as the most influential feature.



78 Journal of Optimization and Supply Chain Management, VVolume 2, Issue 2, 2025

Feature Importance (Regression Model)

shipping_mode_encoded
Latitude
dayofweek_sin
month_sin

day_sin

day_cos

Order Region
month_cos

Longitude
dayofweek_cos

Order Status
order_month
Customer Segment
order_dayofweek
Market

Product Price

Sales

Department Name
Order Item Discount Rate
Order Item Profit Ratio
Category Name

Order tem Total
Order ltem Quantity

0.00 0.05 0.10 015 0.20 0.25
Feature Importance

Figure 5. Feature Importance Scores for the XGBoost Regression Model Predicting Shipping Days. Horizontal bar chart using n
= 180,519 records. The x-axis shows normalized importance values, and the y-axis lists the most impactful variables. “Shipping
mode (encoded)” and “Latitude” were the leading predictors of delivery duration.

3.4 Comparative Analysis with Related Work

Table 3 compares the results of this study with other recent works addressing delivery lead time and risk prediction
using machine learning.

Table 3. Comparative performance of related studies on delivery prediction.

Study Dataset Models Best Model R&%{iisig)n Clsjiﬂicc egi)on
SmatSupply ey 100KForders gt e XGBoost M0 Fiooso
E:Zr(])%uz(;hury el e-comF:r?;?::Ie data RF, GBM, ANN GBM RMSE =1.12 '5'\:01(:::8356
Nguyen et al. (2021) ng::;i:ts loT C);t(;gg;ﬁ’ XGBoost RMSE = 0.95 'Al‘zclc ::88878 '
Wu & Chen (2020) Cougztrade""ery DT, RF, SVM RF RMSE = 1.20 'A‘Fclc::g_'g; :
Li et al. (2019) S;’e‘l‘(’)%ghai” XGBoost, LSTM LSTM RMSE = 0.91 A'\:ch::c()J.gg :
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3.5 Discussion

The results validate the preeminence of tree-based ensemble techniques, especially XGBoost, in both regression and
classification for delivery-related predictive tasks. The attained R? of 0.70 and Fl-score of 0.89 exceed other
analogous investigations (Table 4), illustrating that the integration of cyclical temporal characteristics and
comprehensive categorical encoding can produce significant performance improvements. The findings indicate that
although ensemble stacking can enhance model stability, it does not inherently surpass a well-optimized singular
XGBoost model. This finding endorses the utilization of XGBoost as an independent solution in actual logistics
contexts, owing to its equilibrium of accuracy, computing efficiency, and interpretability in feature importance
assessment.

The underperformance of ensemble combinations compared to standalone XGBoost may result from correlated
residuals among base learners. As Random Forest and XGBoost both rely on decision-tree ensembles, stacking them
provided limited additional variance reduction. Operationally, XGBoost’s higher precision and faster convergence
make it preferable for deployment in near-real-time supply chain analytics.

4. Conclusion

This study developed and evaluated multiple machine learning models including Linear Regression, Decision Tree,
Random Forest, and XGBoost to forecast delivery lead time and late delivery risk using the DataCo Smart Supply
Chain dataset. Results showed that tree-based ensemble methods, particularly XGBoost, achieved the best
performance, with an R2 of 0.70 for regression and 0.89 accuracy for classification. These outcomes confirm that
nonlinear ensemble learners capture complex relationships among order, shipping, and geographic factors more
effectively than linear models.

From an operational standpoint, achieving nearly 90% accuracy in predicting late delivery risk enables managers
to make proactive, data-driven decisions. XGBoost-based predictions can guide resource reallocation, dynamic
routing, and improved customer communication strategies. Such actions can reduce late deliveries by 15-20% and
enhance on-time performance. Furthermore, accurate lead-time forecasts can support inventory coordination,
scheduling optimization, and service-level-agreement (SLA) planning, thereby improving overall supply chain
responsiveness and customer satisfaction.

However, this research is constrained by its reliance on historical data, which limits adaptability to real-time
disruptions such as traffic congestion, weather variation, or sudden carrier capacity changes. The exclusion of
external contextual factors including seasonal demand fluctuations, supplier variability, and macroeconomic
conditions also narrows generalizability. Future research should integrate 10T and streaming data for real-time
model retraining and adaptive decision support, explore hybrid deep learning and ensemble architectures, and test
model performance across diverse industrial contexts.

Overall, the proposed framework demonstrates that interpretable, data-driven machine learning models can
substantially improve operational efficiency and delivery reliability in e-commerce supply chain management.
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