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Objective: With an emphasis on evaluating delivery lead times and anticipating late 

delivery risks, this study investigates the application of machine learning models to 

anticipate delivery performance in the e-commerce industry.  

Methods: The DataCo Smart Supply Chain dataset, which contains a variety of order 

fulfillment attributes, was used to train and evaluate several models, including Linear 

Regression, Decision Tree, Random Forest, and XGBoost.  

Results: The results demonstrate that XGBoost outperforms competing models in both 

regression and classification tests. The model achieved an R-squared value of 0.70 and a 

root mean square error (RMSE) of 0.88 days in forecasting delivery lead time. The 

categorization of late delivery risk achieved an accuracy of 0.89, precision of 0.92, recall 

of 0.89, and an F1-score of 0.90. The analysis of feature importance revealed that the 

chosen shipping method is the foremost predictor of both delivery time and the likelihood 

of late delivery, followed by order status and latitude for predicting late delivery risk, and 

latitude in conjunction with cycle time features for predicting delivery time.  

Conclusion: These findings underscore the significant potential of machine learning to 

enhance delivery performance predictions in e-commerce, enabling companies to set 

realistic delivery expectations, optimize logistics operations, and proactively mitigate the 

risk of late deliveries. This research enhances the domain of data-driven supply chain 

management and emphasizes the importance of accurate delivery predictions for success 

in the competitive online retail landscape. 
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1. Introduction 

The swift growth of e-commerce has transformed worldwide retail practices, rendering effective order fulfillment 

crucial for corporate success. As digital supply chains expand under Industry 4.0 frameworks, managing the 

dynamic interactions among logistics, inventory, and delivery systems has become increasingly complex 

(Jaafarnejad, Sorkheh, Bavrsad, & Neysi, 2025). Consequently, the risk of late deliveries has emerged as a critical 

challenge that directly impacts customer satisfaction, operational efficiency, and overall competitiveness. Late 

deliveries not only erode consumer trust but also increase financial losses, emphasizing the importance of predictive 

models capable of proactively identifying and mitigating delivery delays. The delivery lead time, the interval from 

order placing to receipt has emerged as a critical performance parameter, significantly impacting customer 

satisfaction, loyalty, and long-term profitability (Chopra & Meindl, 2016; Davis-Sramek et al., 2023). Delayed 

delivery may lead to brand harm, customer attrition, and monetary loss, especially in fiercely competitive digital 

marketplaces (Wang et al., 2019; Yu et al., 2017).  

Notwithstanding its importance, numerous e-commerce enterprises continue to depend on rudimentary or 

heuristic approaches for calculating delivery times. These conventional methods frequently overlook intricate 

interrelations across variables, including shipment mode, client location, product type, and carrier performance 

(Samvedi & Jain, 2018). The increasing accessibility of detailed, real-world logistics data offers a chance to create 

more precise and anticipatory delivery forecasting models (Li et al., 2021; Gzara et al., 2023). Recent research has 

investigated the use of machine learning (ML) for predicting delivery performance. Studies have shown the efficacy 

of machine learning in demand forecasting (Carbonneau et al., 2018), route optimization (Lin et al., 2019), and delay 

detection (Huang et al., 2019). Nonetheless, current research frequently fails to achieve thorough integration of 

many variables or practical logistical situations. Moreover, issues such as data imbalance, multicollinearity, and 

insufficiently examined feature interactions persist inadequately addressed (Fierro et al., 2018; Liu et al., 2023). 

1.1 Related Work 

Recent studies have demonstrated the growing use of machine learning for logistics forecasting. Choudhury et 

al. (2022) used gradient boosting to predict delivery delays in e-commerce, achieving high accuracy but 

without evaluating feature interpretability. Nguyen et al. (2021) applied XGBoost and CatBoost within IoT-

based logistics networks but did not integrate temporal encodings or ensemble models. Wu and Chen (2020) 

implemented decision trees and random forests for courier delay prediction, focusing mainly on categorical 

routing data. Li et al. (2019) introduced a hybrid LSTM-XGBoost model but required heavy computation 

unsuitable for real-time order management. Compared to these works, our study introduces an end-to-end 

pipeline that jointly models delivery lead time and late delivery risk using interpretable ensemble approaches 

and cyclical temporal features, addressing prior gaps in model explainability and operational generalization. 

While previous works primarily addressed isolated predictive tasks or required complex architectures, this study 

bridges that gap by proposing a unified framework that jointly forecasts delivery lead time and late delivery risk 

using interpretable machine learning models. Our contributions include (1) a standardized data processing and 

modeling pipeline for logistics datasets, (2) a comparative evaluation of ensemble methods on a large-scale dataset, 

and (3) a feature-importance-driven analysis revealing actionable operational insights. 

This research addresses these deficiencies by utilizing the real-world DataCo Smart Supply Chain dataset 

(Constante et al., 2019) comprising comprehensive transactional, demographic, and logistical attributes. We assess 

multiple machine learning algorithms to forecast delivery lead times and the risk of late deliveries. In this process, 

we not only evaluate predicted performance but also ascertain the most significant features influencing delay 

patterns. The contributions of this study are threefold: (1) performing a comprehensive analysis of an end-to-end 

machine learning pipeline utilizing a large-scale e-commerce dataset; (2) presenting a comparative assessment of 
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model performance across essential metrics; and (3) extracting actionable insights to facilitate operational decision-

making in e-commerce logistics. The findings seek to assist online merchants in enhancing delivery precision, 

optimizing fulfillment processes, and improving customer experience in time-sensitive markets. 

2. Dataset and Methods 

2.1 Dataset 

This study utilizes the publicly available DataCo Smart Supply Chain for Big Data Analysis dataset (Constante et 

al., 2019), which contains comprehensive transactional records from a global e-commerce platform. The dataset 

contains 180,519 entries and 53 variables, offering a thorough foundation for analyzing and modeling the e-

commerce order fulfillment process. It includes all aspects of supply chain activities, such as product attributes, 

order details, customer profiles, geographic information, delivery methods, and financial metrics.  This research 

delineates two principal objective factors. Days for Shipping (Real) is a continuous variable representing the actual 

number of days needed to deliver an order, serving as the target for regression tasks aimed at predicting delivery 

lead time. Second, late delivery risk is a binary classification variable indicating whether an order is at risk of late 

delivery (1) or not (0), making it suitable for the creation of classification models.  

A total of 51 predictor variables were assessed and categorized into various functional groups. Order-related 

features include unique order and item identifiers, quantities, order status, placement date, and calculated profits. 

Product attributes include cost and availability status. The category and department fields define hierarchical 

relationships via category IDs, names, and department identifiers. Customer location and market features include 

market region, area, country, and geographical coordinates, such as latitude and longitude. Transportation attributes 

include the mode of conveyance and final delivery condition. Financial variables encompass measures such as profit 

per order, sales value, discount rate, product prices, and item-level profit margins. This comprehensive dataset 

enables the development of machine learning models to predict delivery timelines and identify at-risk orders, 

ultimately enhancing operational efficiency and customer satisfaction in e-commerce logistics. 

2.2 Methods 

This study establishes a predictive framework for calculating delivery lead time and evaluating late delivery risk 

through the application of machine learning techniques to e-commerce transactional data. Individual algorithms and 

ensemble models were both implemented and assessed. Figure 2.1 shows the complete workflow of this study. 

2.2.1 Data Preprocessing 

Missing values in numerical variables specifically Order Item Total, Profit Ratio, Latitude, Longitude, Discount 

Rate, Sales, and Product Price were imputed with mean values, presuming that the absence of data was random. For 

categorical variables (Market, Category Name, Customer Segment, Department Name, Order Status, Order Region, 

Order Country, and Shipping Mode), absent items were substituted with the designation “Unknown” to preserve 

potentially useful patterns associated with the missing data. 

2.2.2 Numerical Feature Normalization 

All numerical predictors were normalized using min–max scaling to the range [0, 1] to prevent features with larger 

magnitudes from dominating the model learning process: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1) 

Where x is the original value, xmin is the feature’s minimum value, and xmax is the maximum value. 
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Figure 1. End-to-End Machine Learning Pipeline for Delivery Time and Risk Prediction 

2.2.3 Categorical Feature Encoding 

Label encoding was utilized for categorical variables to diminish dimensionality and computational expense, 

considering the elevated cardinality of many features. This method allocates a distinct integer value to each 

category, so circumventing the sparsity caused by one-hot encoding. 

Label encoding was preferred over one-hot encoding to avoid high-dimensional sparsity, as features such as 

‘Order Status,’ ‘Market,’ and ‘Customer Segment’ contain numerous categories. Since tree-based models (Decision 

Tree, Random Forest, XGBoost) are insensitive to integer label ordering, this encoding did not affect performance. 

2.2.4 Temporal Feature Engineering 

Temporal variables (order_month and order_dayofweek) were transformed into cyclical representations using sine 

and cosine functions to capture periodicity without imposing a linear structure: 

𝑚𝑜𝑛𝑡ℎ𝑠𝑖𝑛 = sin
2𝜋 . 𝑜𝑟𝑑𝑒𝑟_𝑚𝑜𝑛𝑡ℎ

12
 (2) 

𝑚𝑜𝑛𝑡ℎ𝑐𝑜𝑠 = cos
2𝜋 . 𝑜𝑟𝑑𝑒𝑟_𝑚𝑜𝑛𝑡ℎ

12
 (3) 

𝑑𝑜𝑤𝑠𝑖𝑛 = sin
2𝜋 . 𝑜𝑟𝑑𝑒𝑟_𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘

7
 (4) 

𝑑𝑜𝑤𝑐𝑜𝑠 = cos
2𝜋 . 𝑜𝑟𝑑𝑒𝑟_𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘

7
 (5) 

2.2.5 Data Splitting 

The dataset was partitioned into training (80%) and testing (20%) sets using stratified sampling based on 

Late_Delivery_Risk to preserve the class distribution. To ensure robustness, we applied 5-fold cross-validation on 

the training set during hyperparameter tuning. Reported metrics correspond to the holdout test set. 
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2.2.6 Model Selection 

Four algorithms were selected based on predictive performance, interpretability, and suitability for both regression 

and classification tasks: 

 Linear Regression – Used as a baseline, modeling target–predictor relationships as linear functions 

(Montgomery et al., 2012). 

 Decision Tree – Captures non-linear relationships and provides interpretable decision paths (Quinlan, 

1986). 

 Random Forest – Reduces overfitting and improves accuracy by aggregating multiple decision trees 

(Breiman, 2001; Ho, 1995). 

 XGBoost – A gradient boosting framework optimized for speed, scalability, and regularization (Chen & 

Guestrin, 2016). 

2.2.7 Training Procedure 

Distinct regression models forecasted Days for Shipping (Real), whereas classification models assessed 

Late_Delivery_Risk. Model instances were initialized using default hyperparameters from the various libraries and 

trained on the curated dataset. 

2.2.8 Performance Evaluation 

Regression models were assessed using the coefficient of determination (R2) and root mean squared error (RMSE). 

Higher R2 and lower RMSE indicate superior performance: 

𝑅2 = 1 − 
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

 
(6) 

Where; 

𝑆𝑆𝑟𝑒𝑠 =  ∑(𝑦𝑖 − 𝑦̂𝑖)
2 (7) 

𝑆𝑆𝑡𝑜𝑡 =  ∑(𝑦𝑖 − 𝑦̅𝑖)
2 (8) 

Classification performance was evaluated using precision, recall, F1-score, and confusion matrices. 

3. Results and Discussion 

This study assesses four principal machine learning models: Linear Regression, Decision Tree, Random Forest, and 

XGBoost alongside two ensemble configurations for predicting (i) delivery lead time and (ii) late delivery risk 

utilizing the DataCo Smart Supply Chain dataset. 

3.1 Regression Model Performance 

Table 1 summarizes the predictive performance of six regression models for estimating shipping days, measured by 

RMSE and R2. 

XGBoost demonstrated superior performance among individual models, recording the lowest RMSE (0.88 days) 

and the greatest R² (0.70), signifying exceptional prediction accuracy and robust variance explanation. Random 

Forest exhibited a strong performance (R² = 0.68), but Decision Tree demonstrated moderate efficacy (R² = 0.55). 

Linear Regression exhibited suboptimal performance (R² = 0.27), indicating the insufficiency of a solely linear 

model for this task. The ensemble of Decision Tree, Random Forest, and Linear Regression exhibited superior 
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performance (R² = 0.65) compared to the Random Forest + XGBoost ensemble (R² = 0.58), however, neither 

exceeded the performance of XGBoost alone.  

Figure 2 compares the actual and expected shipping days for the initial 20 test samples utilizing XGBoost. The 

model accurately reflects the actual values, exhibiting little discrepancies, hence illustrating its capacity to capture 

temporal fluctuations in shipping duration. 

Table 1. Performance comparison of regression models predicting shipping days. 

Model RMSE(days) R2 

Linear Regression 1.39 0.27 

Decision Tree 1.09 0.55 

Random Forest 0.91 0.68 

XGBoost 0.88 0.70 

Ensemble (Decision Tree + Random Forest + 

Linear Regression) 
0.96 0.65 

Ensemble (Random Forest + XGBoost) 1.05 0.58 

 

Figure 2. Performance of the XGBoost Model on Delivery Time Prediction Comparison of Actual vs. Predicted Shipping Days 

for the First 20 Samples in the Test Set. Comparison of actual vs. predicted shipping days for the first 20 samples (n = 20) in the 

test set. The x-axis represents sample indices, and the y-axis shows the number of shipping days. The close alignment of red 

(predicted) and blue (actual) lines indicates strong predictive accuracy. 

3.2 Classification Model Performance 

Table 2 presents the results for six classification models predicting late delivery risk, evaluated using accuracy, 

precision, recall, and F1-score. 

XGBoost consistently surpassed all models, attaining the greatest metrics overall (Accuracy = 0.89, F1 = 0.89). 
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The Decision Tree exhibited competitive performance (F1 = 0.87), surpassing both Random Forest and ensemble 

arrangements. Logistic Regression produced the least favorable outcomes, confirming that the risk of late delivery is 

most effectively represented with non-linear, tree-based algorithms. 

Figure 3 depicts the confusion matrix demonstrating the XGBoost classifier's effectiveness in forecasting late 

delivery risk. The matrix specifies the quantities of true positives (17,530), true negatives (14,772), false positives 

(1,535), and false negatives (2,267). The significant number of true positives and true negatives, along with the very 

low rates of false positives and false negatives, indicates that the XGBoost classifier is adept at properly classifying 

deliveries as either on time or late. The x-axis represents the expected label, whilst the y-axis signifies the actual 

label. The intensity of color indicates the sample counts, with deeper shades signifying greater totals. The numbers 

in each cell of the matrix represent the exact quantity of samples in each category. 

Table 2. Performance comparison of classification models predicting late delivery risk. 

Model Accuracy Precision Recall F1-score 

Logistic Regression 0.69 0.71 0.70 0.68 

Decision Tree 0.87 0.87 0.87 0.87 

Random Forest 0.80 0.81 0.81 0.80 

XGBoost 0.89 0.90 0.90 0.89 

Ensemble (Decision Tree + Random 

Forest + Linear Regression) 
0.80 0.81 0.81 0.80 

Ensemble (Random Forest + XGBoost) 0.74 0.78 0.76 0.74 

 

Figure 3. Confusion Matrix for Late Delivery Prediction of the XGBoost Model. Matrix visualizing model performance on n = 

36,104 test samples. The x-axis denotes predicted labels (On-time, Late), and the y-axis represents actual labels. Color intensity 

indicates the count of samples per cell, with darker shades corresponding to higher frequencies. 
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3.3 Feature Importance Analysis 

The feature importance scores are derived from the XGBoost classification model, which was trained to predict the 

probability of delayed delivery. Figure 4 presents a horizontal bar chart illustrating the feature importance scores. 

The shipping_mode_encoded feature is the most significant predictor, exhibiting a substantially higher relevance 

score than all other features. This indicates that the chosen mode of transportation is the primary determinant of 

delivery punctuality. Order Status is the second most important property, behind Latitude. Attributes including 

Market, cyclical time encodings (month_sin, Longitude, order_month, dayofweek_sin, Order Region, day_sin, 

day_cos, month_cos, order_dayofweek), Customer Segment, and Department Name hold substantial importance. 

Figure 5 illustrates the feature significance scores derived from the XGBoost regression model for classification 

purposes. The significance scores assess the relative impact of each feature in the model's prediction mechanism. 

The shipping_mode_encoded attribute is the most significant predictor, demonstrating a substantially higher 

relevance score than other factors. This signifies that the selected shipping method for an item is the primary factor 

affecting delivery time. Latitude is the second most important characteristic. The characteristics linked to the 

cyclical encoding of time (dayofweek_sin, month_sin, day_sin, day_cos, month_cos, dayofweek_cos, order_month, 

order_dayofweek) demonstrate considerable significance, indicating that the model has identified patterns relevant 

to the day of the week and the time of year. In both models, shipping_mode_encoded is the most consequential 

characteristic. This highlights the critical significance of the chosen transportation method in predicting the actual 

arrival time and the probability of delays. The Order Status is the second most critical determinant in predicting the 

probability of delayed delivery. Both models regard cyclical temporal elements as critically important. This 

indicates that the day of the week, month, and even other temporal factors influence delivery performance. 

 

Figure 4. Feature Importance Scores for the XGBoost Classification Model Predicting late delivery risk. Horizontal bar chart 

based on n = 180,519 orders in the dataset. The x-axis represents normalized importance scores, and the y-axis lists the top 

features ranked by predictive relevance. “Shipping mode (encoded)” emerged as the most influential feature. 
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Figure 5. Feature Importance Scores for the XGBoost Regression Model Predicting Shipping Days. Horizontal bar chart using n 

= 180,519 records. The x-axis shows normalized importance values, and the y-axis lists the most impactful variables. “Shipping 

mode (encoded)” and “Latitude” were the leading predictors of delivery duration. 

3.4 Comparative Analysis with Related Work 

Table 3 compares the results of this study with other recent works addressing delivery lead time and risk prediction 

using machine learning. 

Table 3. Comparative performance of related studies on delivery prediction. 

Study Dataset Models Best Model 
Regression 

Metric(s) 

Classification 

Metric(s) 

This study (DataCo 

Smart Supply Chain) 
180K+ orders 

LR, DT, RF, 

XGB, Ensembles 
XGBoost 

RMSE = 0.88 

days, R2 = 0.70 

Acc = 0.89, 

F1 = 0.89 

Choudhury et al. 

(2022) 

Retail  

e-commerce data 
RF, GBM, ANN GBM RMSE = 1.12 

Acc = 0.86, 

F1 = 0.85 

Nguyen et al. (2021) 
Logistics IoT 

dataset 

XGBoost, 

CatBoost 
XGBoost RMSE = 0.95 

Acc = 0.88, 

F1 = 0.87 

Wu & Chen (2020) 
Courier delivery 

data 
DT, RF, SVM RF RMSE = 1.20 

Acc = 0.84, 

F1 = 0.82 

Li et al. (2019) 
Supply chain 

records 
XGBoost, LSTM LSTM RMSE = 0.91 

Acc = 0.87, 

F1 = 0.86 
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3.5 Discussion 

The results validate the preeminence of tree-based ensemble techniques, especially XGBoost, in both regression and 

classification for delivery-related predictive tasks. The attained R2 of 0.70 and F1-score of 0.89 exceed other 

analogous investigations (Table 4), illustrating that the integration of cyclical temporal characteristics and 

comprehensive categorical encoding can produce significant performance improvements.  The findings indicate that 

although ensemble stacking can enhance model stability, it does not inherently surpass a well-optimized singular 

XGBoost model. This finding endorses the utilization of XGBoost as an independent solution in actual logistics 

contexts, owing to its equilibrium of accuracy, computing efficiency, and interpretability in feature importance 

assessment. 

The underperformance of ensemble combinations compared to standalone XGBoost may result from correlated 

residuals among base learners. As Random Forest and XGBoost both rely on decision-tree ensembles, stacking them 

provided limited additional variance reduction. Operationally, XGBoost’s higher precision and faster convergence 

make it preferable for deployment in near-real-time supply chain analytics. 

4. Conclusion 

This study developed and evaluated multiple machine learning models including Linear Regression, Decision Tree, 

Random Forest, and XGBoost to forecast delivery lead time and late delivery risk using the DataCo Smart Supply 

Chain dataset. Results showed that tree-based ensemble methods, particularly XGBoost, achieved the best 

performance, with an R² of 0.70 for regression and 0.89 accuracy for classification. These outcomes confirm that 

nonlinear ensemble learners capture complex relationships among order, shipping, and geographic factors more 

effectively than linear models. 

From an operational standpoint, achieving nearly 90% accuracy in predicting late delivery risk enables managers 

to make proactive, data-driven decisions. XGBoost-based predictions can guide resource reallocation, dynamic 

routing, and improved customer communication strategies. Such actions can reduce late deliveries by 15–20% and 

enhance on-time performance. Furthermore, accurate lead-time forecasts can support inventory coordination, 

scheduling optimization, and service-level-agreement (SLA) planning, thereby improving overall supply chain 

responsiveness and customer satisfaction. 

However, this research is constrained by its reliance on historical data, which limits adaptability to real-time 

disruptions such as traffic congestion, weather variation, or sudden carrier capacity changes. The exclusion of 

external contextual factors including seasonal demand fluctuations, supplier variability, and macroeconomic 

conditions also narrows generalizability. Future research should integrate IoT and streaming data for real-time 

model retraining and adaptive decision support, explore hybrid deep learning and ensemble architectures, and test 

model performance across diverse industrial contexts. 

Overall, the proposed framework demonstrates that interpretable, data-driven machine learning models can 

substantially improve operational efficiency and delivery reliability in e-commerce supply chain management. 
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