Abbasi, I. A., Ashari, H., & Yusuf, I. (2023). System dynamics modelling: Integrating empty fruit bunch biomass logistics to reduce GHG emissions. Resources, 12(4), 53.
https://doi.org/10.3390/resources12040053
Ahmad, S., Tahar, R. M., Muhammad-Sukki, F., Munir, A. B., & Rahim, R. A. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renewable and Sustainable Energy Reviews, 56, 29-37.
https://doi.org/10.1016/j.rser.2015.11.034
Alsagri, A. S., & Alrobaian, A. A. (2022). Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview. Energies, 15(16), 5977.
https://doi.org/10.3390/en15165977
Cadini, F., Agliardi, G. L., & Zio, E. (2017). A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions. Applied Energy, 185, 267–279.
https://doi.org/10.1016/j.apenergy.2016.10.086
Chen, L. I., Lisha, Z. H. O. U., Na, L. I., & Ming, Z. E. N. G. (2012). Modelling and simulation of power grid engineering project based on system dynamics on the background of smart grid. Systems Engineering Procedia, 3, 92-99.
https://doi.org/10.1016/j.sepro.2011.11.013
Ciapessoni, E., Cirio, D., Massucco, S., Morini, A., Pitto, A., & Silvestro, F. (2017). Risk-based dynamic security assessment for power system operation and operational planning. Energies, 10(4), 475.
https://doi.org/10.3390/en10040475
Claeys, S., Vanin, M., Geth, F., & Deconinck, G. (2021). Applications of optimization models for electricity distribution networks. WIREs Energy and Environment, 10(5).
https://doi.org/10.1002/wene.401
Dehghan, H., Amin-Naseri, M. R., & Nahavandi, N. (2021). A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies. Utilities Policy, 69, 101165.
https://doi.org/10.1016/j.jup.2020.101165
Fallah Baghemoortini, E., & Shishebori, D. (2023). Integrating FMEA and BWM Methods to Evaluate and Prioritize Risks with Greater Differentiation (A Case Study of Operational Risks of Electricity Distribution Network). Advances in Industrial Engineering, 57(1), 111-125.
10.22059/aie.2023.353587.1857
Fallah Baghemoortini, E., Shishebori, D., & Alimohammadi Ardakani, M. (2024). Analysis of operational risks of electricity distribution network based on the fuzzy cognitive map approach. Journal of Energy Management and Technology, 8(4), 343-348.
10.22109/jemt.2024.423829.1474
Farahnak, M. T., Afshar Kazemi, M. A., Mohaghar, A., & Keramati, M. A. (2024). Designing a Model for Sustainable Power Transmission Capacity Using Systems Dynamics Approach. Available at SSRN 4743287.
http://dx.doi.org/10.2139/ssrn.4743287
Forrester, J. (1961). W.(1961). Industrial Dynamics. Waltham MA, Pegasus Communications.
Ghezelbash, A., Seyedzadeh, M., Khaligh, V., & Liu, J. (2023). Impacts of green energy expansion and gas import reduction on South Korea’s economic growth: A system dynamics approach. Sustainability, 15(12), 9281.
https://doi.org/10.3390/su15129281
Gupta, A., Chawla, M., & Tiwari, N. (2022). Electricity Power Consumption Forecasting Techniques: A survey. In Proceedings of the International Conference on Innovative Computing & Communication (ICICC).
https://dx.doi.org/10.2139/ssrn.4019431
Hadi Abdulwahid, A., Al-Razgan, M., Fakhruldeen, H. F., Churampi Arellano, M. T., Mrzljak, V., Arabi Nowdeh, S., & Moghaddam, M. J. H. (2023). Stochastic Multi-Objective Scheduling of a Hybrid System in a Distribution Network Using a Mathematical Optimization Algorithm Considering Generation and Demand Uncertainties. Mathematics, 11(18), 3962.
https://doi.org/10.3390/math11183962
He, Y. X., Jiao, J., Chen, R. J., & Shu, H. (2018). The optimization of Chinese power grid investment based on transmission and distribution tariff policy: A system dynamics approach. Energy Policy, 113, 112-122.
https://doi.org/10.1016/j.enpol.2017.10.062
Heydari Kushalshah, T., Daneshmand-Mehr, M., & Abolghasemian, M. (2023). Hybrid modelling for urban water supply system management based on a bi-objective mathematical model and system dynamics: A case study in Guilan province. Journal of Industrial and Systems Engineering, 15(1), 260-279.
20.1001.1.17358272.2023.15.1.12.4
Honarmand, M. E., Haghifam, M. R., & Ghazizadeh, M. S. (2015). Effect of Processes of Component Entry in Reliability of Electrical Distribution Networks. Iranian Electric Industry Journal of Quality and Productivity, 4(1), 14-23.
http://ieijqp.ir/article-1-205-en.html
Hwang, S. K., Kim, D. H., & Kim, S. C. (2024). Analysis of risk priority number of FMEA and surprise index for components of 7 kW electric vehicle charger. Journal of Loss Prevention in the Process Industries, 91, 105375.
https://doi.org/10.1016/j.jlp.2024.105375
Jahani, H., Gholizadeh, H., Hayati, Z., & Fazlollahtabar, H. (2023). Investment risk assessment of the biomass-to-energy supply chain using system dynamics. Renewable Energy, 203, 554-567.
https://doi.org/10.1016/j.renene.2022.12.038
Kharaghani, M., Homayounfar, M., & Taleghani, M. (2023). A System Dynamics Approach for Value Chain Analysis in Pharmaceutical Industry. Journal of Industrial and Systems Engineering, 15(2), 124-139.
https://www.jise.ir/article_204401.html
Li, Y., Liang, C., Ye, F., & Zhao, X. (2023). Designing government subsidy schemes to promote the electric vehicle industry: A system dynamics model perspective. Transportation Research Part A: Policy and Practice, 167, 103558.
https://doi.org/10.1016/j.tra.2022.11.018
Lopes, J. A. P., Madureira, A. G., Matos, M., Bessa, R. J., Monteiro, V., Afonso, J. L., Santos, S. F., Catalão, J. P. S., Antunes, C. H., & Magalhães, P. (2020). The future of power systems: Challenges, trends, and upcoming paradigms. WIREs Energy and Environment, 9(3).
https://doi.org/10.1002/wene.368
Mansouri, M. R., Simab, M., & Bahmani Firouzi, B. (2021). Impact of Demand Response on Reliability Enhancement in Distribution Networks. Sustainability, 13(23), 13201.
https://doi.org/10.3390/su132313201
Massaoudi, M., Davis, K. R., & Akramul Haque, K. (2025). Analysis and Quantification of Demand Flexibility for Resilient Distribution Networks: A Systematic Review. IEEE Access, 13, 42650–42668.
https://doi.org/10.1109/ACCESS.2025.3548526
Modes, F. (2018). Effects analysis (fmea and fmeca). Standard IEC, 60812.
Mohd Azmi, K. H., Mohamed Radzi, N. A., Azhar, N. A., Samidi, F. S., Thaqifah Zulkifli, I., & Zainal, A. M. (2022). Active Electric Distribution Network: Applications, Challenges, and Opportunities. IEEE Access, 10, 134655–134689.
https://doi.org/10.1109/ACCESS.2022.3229328
Paul, S., Poudyal, A., Poudel, S., Dubey, A., & Wang, Z. (2024). Resilience assessment and planning in power distribution systems: Past and future considerations. Renewable and Sustainable Energy Reviews, 189, 113991.
https://doi.org/10.1016/j.rser.2023.113991
Ponnaganti, P., Pillai, J. R., & Bak‐Jensen, B. (2018). Opportunities and challenges of demand response in active distribution networks. WIREs Energy and Environment, 7(1).
https://doi.org/10.1002/wene.271
Putra, T. M., & Prijadi, R. (2024). Risk Analysis of Operational Disruptions in Public Electric Vehicle Charging Stations Using the Failure Mode and Effects Analysis (FMEA) Method. Quantitative Economics and Management Studies, 5(3), 541-559.
https://doi.org/10.35877/454RI.qems2585
Quiroga, O. A., Meléndez, J., & Herraiz, S. (2011, May). Fault causes analysis in feeders of power distribution networks. In International conference in renewables energies and quality power, ICREP (Vol. 11, p. 11).
https://doi.org/10.24084/repqj09.619
Shaker, F., Shahin, A., & Jahanyan, S. (2022). Investigating the causal relationships among failure modes, effects and causes: a system dynamics approach. International Journal of Quality & Reliability Management, 39(8), 1977–1995.
https://doi.org/10.1108/IJQRM-07-2020-0247
Souto, L., Meléndez, J., & Herraiz, S. (2021). Monitoring of low voltage grids with multilayer principal component analysis. International Journal of Electrical Power & Energy Systems, 125, 106471.
https://doi.org/10.1016/j.ijepes.2020.106471
Subramanium, L., Hassan, S., Osman, Mohd. H., & Zulzalil, H. (2025). Reliability Risk Assessment Approaches in Software Engineering: A Review Structured by Software Development LifeCycle (SDLC) Phases and Reliable Sub-Characteristics. International Journal of Advanced Computer Science and Applications, 16(9).
https://doi.org/10.14569/IJACSA.2025.0160910
Taheri, N., Pishvaee, M. S., & Jahani, H. (2025). A robust multi-objective optimization model for grid-scale design of sustainable cropping patterns: A case study. Computers & Industrial Engineering, 200, 110772.
https://doi.org/10.1016/j.cie.2024.110772
Wang, X., Dong, Z., & Sušnik, J. (2023). System dynamics modelling to simulate regional water-energy-food nexus combined with the society-economy-environment system in Hunan Province, China. Science of the Total Environment, 863, 160993.
https://doi.org/10.1016/j.scitotenv.2022.160993
Wu, J., Zhang, L., Bai, Y., & Reniers, G. (2022). A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory. Reliability Engineering & System Safety, 221, 108331.
https://doi.org/10.1016/j.ress.2022.108331
Yang, C., Sun, Y., Zou, Y., Zheng, F., Liu, S., Zhao, B., Wu, M., & Cui, H. (2023). Optimal Power Flow in Distribution Network: A Review on Problem Formulation and Optimization Methods. Energies, 16(16), 5974.
https://doi.org/10.3390/en16165974
Zhang, Y., Karve, P. M., & Mahadevan, S. (2024, July). Power grid operational risk assessment using graph neural network surrogates. In 2024 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE.
https://doi.org/10.1109/PESGM51994.2024.10688788