Modeling and Forecasting the Performance of Power Distribution Networks Considering Operational Risks in Energy Imbalance Conditions

Document Type : Research Paper

Authors

School of Industrial Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

Abstract

Objective: The stable performance of urban power distribution networks plays a fundamental role in ensuring a sustainable and reliable energy supply. However, increasing operational complexities and multiple risks necessitate efficient and adaptive management approaches.
Methods: This study employs system dynamics modeling and Failure Mode and Effects Analysis (FMEA) to model and forecast the performance of urban power distribution networks under energy imbalance conditions. The proposed framework introduces risk-related parameters, failure probability, maintenance delay rate, and risk-propagation factor, and embeds scenario-based forecasting to 2042, enabling analysis of feedbacks between operational risks and demand growth. The novelty of this study lies in developing an integrated SD–FMEA analytical framework that, unlike previous models, simultaneously captures the dynamic propagation of operational risks and their long-term feedback interactions with energy imbalance, network losses, and financial performance.
Results: Simulation results for the Yazd power distribution network indicate that optimized operational risk management can significantly reduce failure rates by the year 2042. Nevertheless, the projected increase in the number of subscribers to 1.2 million and the corresponding growth in electricity consumption pose new challenges for network stability.
Conclusion: While reducing operational risks improves service quality and system resilience, effective demand-side management is also essential to prevent potential network instability. Ultimately, the findings suggest that combining proactive risk management strategies with energy demand control is a key approach to maintaining the long-term sustainability of power distribution networks under energy imbalance conditions.

Keywords


Abazari Askari, A., Sadeghi, Z., & Jalaee, S. A. (2025). The Electricity Outage Cost in Iran: An Input Output Analysis. Iranian Journal of Economic Studies, 13(2), 619–646. https://doi.org/10.22099/ijes.2025.53520.2047
Abbasi, I. A., Ashari, H., & Yusuf, I. (2023). System dynamics modelling: Integrating empty fruit bunch biomass logistics to reduce GHG emissions. Resources, 12(4), 53. https://doi.org/10.3390/resources12040053
Ahmad, S., Tahar, R. M., Muhammad-Sukki, F., Munir, A. B., & Rahim, R. A. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renewable and Sustainable Energy Reviews, 56, 29-37. https://doi.org/10.1016/j.rser.2015.11.034
Alsagri, A. S., & Alrobaian, A. A. (2022). Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview. Energies, 15(16), 5977. https://doi.org/10.3390/en15165977
Brown, R. E. (2017). Electric Power Distribution Reliability. CRC Press. https://doi.org/10.1201/9780849375682
Cadini, F., Agliardi, G. L., & Zio, E. (2017). A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions. Applied Energy, 185, 267–279. https://doi.org/10.1016/j.apenergy.2016.10.086
Chen, L. I., Lisha, Z. H. O. U., Na, L. I., & Ming, Z. E. N. G. (2012). Modelling and simulation of power grid engineering project based on system dynamics on the background of smart grid. Systems Engineering Procedia, 3, 92-99. https://doi.org/10.1016/j.sepro.2011.11.013
Ciapessoni, E., Cirio, D., Massucco, S., Morini, A., Pitto, A., & Silvestro, F. (2017). Risk-based dynamic security assessment for power system operation and operational planning. Energies, 10(4), 475. https://doi.org/10.3390/en10040475
Claeys, S., Vanin, M., Geth, F., & Deconinck, G. (2021). Applications of optimization models for electricity distribution networks. WIREs Energy and Environment, 10(5). https://doi.org/10.1002/wene.401
Dehghan, H., Amin-Naseri, M. R., & Nahavandi, N. (2021). A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies. Utilities Policy, 69, 101165. https://doi.org/10.1016/j.jup.2020.101165
Fallah Baghemoortini, E., & Shishebori, D. (2023). Integrating FMEA and BWM Methods to Evaluate and Prioritize Risks with Greater Differentiation (A Case Study of Operational Risks of Electricity Distribution Network). Advances in Industrial Engineering, 57(1), 111-125.  10.22059/aie.2023.353587.1857
Fallah Baghemoortini, E., Shishebori, D., & Alimohammadi Ardakani, M. (2024). Analysis of operational risks of electricity distribution network based on the fuzzy cognitive map approach. Journal of Energy Management and Technology, 8(4), 343-348.  10.22109/jemt.2024.423829.1474
Farahnak, M. T., Afshar Kazemi, M. A., Mohaghar, A., & Keramati, M. A. (2024). Designing a Model for Sustainable Power Transmission Capacity Using Systems Dynamics Approach. Available at SSRN 4743287. http://dx.doi.org/10.2139/ssrn.4743287
Forrester, J. (1961). W.(1961). Industrial Dynamics. Waltham MA, Pegasus Communications.
Ghezelbash, A., Seyedzadeh, M., Khaligh, V., & Liu, J. (2023). Impacts of green energy expansion and gas import reduction on South Korea’s economic growth: A system dynamics approach. Sustainability, 15(12), 9281. https://doi.org/10.3390/su15129281
Gupta, A., Chawla, M., & Tiwari, N. (2022). Electricity Power Consumption Forecasting Techniques: A survey. In Proceedings of the International Conference on Innovative Computing & Communication (ICICC). https://dx.doi.org/10.2139/ssrn.4019431
Hadi Abdulwahid, A., Al-Razgan, M., Fakhruldeen, H. F., Churampi Arellano, M. T., Mrzljak, V., Arabi Nowdeh, S., & Moghaddam, M. J. H. (2023). Stochastic Multi-Objective Scheduling of a Hybrid System in a Distribution Network Using a Mathematical Optimization Algorithm Considering Generation and Demand Uncertainties. Mathematics, 11(18), 3962. https://doi.org/10.3390/math11183962
He, Y. X., Jiao, J., Chen, R. J., & Shu, H. (2018). The optimization of Chinese power grid investment based on transmission and distribution tariff policy: A system dynamics approach. Energy Policy, 113, 112-122. https://doi.org/10.1016/j.enpol.2017.10.062
Heydari Kushalshah, T., Daneshmand-Mehr, M., & Abolghasemian, M. (2023). Hybrid modelling for urban water supply system management based on a bi-objective mathematical model and system dynamics: A case study in Guilan province. Journal of Industrial and Systems Engineering, 15(1), 260-279. 20.1001.1.17358272.2023.15.1.12.4
Honarmand, M. E., Haghifam, M. R., & Ghazizadeh, M. S. (2015). Effect of Processes of Component Entry in Reliability of Electrical Distribution Networks. Iranian Electric Industry Journal of Quality and Productivity, 4(1), 14-23. http://ieijqp.ir/article-1-205-en.html
Hwang, S. K., Kim, D. H., & Kim, S. C. (2024). Analysis of risk priority number of FMEA and surprise index for components of 7 kW electric vehicle charger. Journal of Loss Prevention in the Process Industries, 91, 105375. https://doi.org/10.1016/j.jlp.2024.105375
Jahani, H., Gholizadeh, H., Hayati, Z., & Fazlollahtabar, H. (2023). Investment risk assessment of the biomass-to-energy supply chain using system dynamics. Renewable Energy, 203, 554-567. https://doi.org/10.1016/j.renene.2022.12.038
Kharaghani, M., Homayounfar, M., & Taleghani, M. (2023). A System Dynamics Approach for Value Chain Analysis in Pharmaceutical Industry. Journal of Industrial and Systems Engineering, 15(2), 124-139. https://www.jise.ir/article_204401.html
Li, Y., Liang, C., Ye, F., & Zhao, X. (2023). Designing government subsidy schemes to promote the electric vehicle industry: A system dynamics model perspective. Transportation Research Part A: Policy and Practice, 167, 103558. https://doi.org/10.1016/j.tra.2022.11.018
Liu, Y., Zheng, R., Yi, L., & Yuan, J. (2020). A system dynamics modeling on wind grid parity in China. Journal of Cleaner Production, 247, 119170. https://doi.org/10.1016/j.jclepro.2019.119170
Lopes, J. A. P., Madureira, A. G., Matos, M., Bessa, R. J., Monteiro, V., Afonso, J. L., Santos, S. F., Catalão, J. P. S., Antunes, C. H., & Magalhães, P. (2020). The future of power systems: Challenges, trends, and upcoming paradigms. WIREs Energy and Environment, 9(3). https://doi.org/10.1002/wene.368
Mansouri, M. R., Simab, M., & Bahmani Firouzi, B. (2021). Impact of Demand Response on Reliability Enhancement in Distribution Networks. Sustainability, 13(23), 13201. https://doi.org/10.3390/su132313201
Massaoudi, M., Davis, K. R., & Akramul Haque, K. (2025). Analysis and Quantification of Demand Flexibility for Resilient Distribution Networks: A Systematic Review. IEEE Access, 13, 42650–42668. https://doi.org/10.1109/ACCESS.2025.3548526
Modes, F. (2018). Effects analysis (fmea and fmeca). Standard IEC, 60812.
Mohd Azmi, K. H., Mohamed Radzi, N. A., Azhar, N. A., Samidi, F. S., Thaqifah Zulkifli, I., & Zainal, A. M. (2022). Active Electric Distribution Network: Applications, Challenges, and Opportunities. IEEE Access, 10, 134655–134689. https://doi.org/10.1109/ACCESS.2022.3229328
Oliva, R. (2003). Model calibration as a testing strategy for system dynamics models. European Journal of Operational Research, 151(3), 552–568. https://doi.org/10.1016/S0377-2217(02)00622-7
Paul, S., Poudyal, A., Poudel, S., Dubey, A., & Wang, Z. (2024). Resilience assessment and planning in power distribution systems: Past and future considerations. Renewable and Sustainable Energy Reviews, 189, 113991. https://doi.org/10.1016/j.rser.2023.113991
Ponnaganti, P., Pillai, J. R., & Bak‐Jensen, B. (2018). Opportunities and challenges of demand response in active distribution networks. WIREs Energy and Environment, 7(1). https://doi.org/10.1002/wene.271
Putra, T. M., & Prijadi, R. (2024). Risk Analysis of Operational Disruptions in Public Electric Vehicle Charging Stations Using the Failure Mode and Effects Analysis (FMEA) Method. Quantitative Economics and Management Studies, 5(3), 541-559. https://doi.org/10.35877/454RI.qems2585
Quiroga, O. A., Meléndez, J., & Herraiz, S. (2011, May). Fault causes analysis in feeders of power distribution networks. In International conference in renewables energies and quality power, ICREP (Vol. 11, p. 11). https://doi.org/10.24084/repqj09.619
Shaker, F., Shahin, A., & Jahanyan, S. (2022). Investigating the causal relationships among failure modes, effects and causes: a system dynamics approach. International Journal of Quality & Reliability Management, 39(8), 1977–1995. https://doi.org/10.1108/IJQRM-07-2020-0247
Souto, L., Meléndez, J., & Herraiz, S. (2021). Monitoring of low voltage grids with multilayer principal component analysis. International Journal of Electrical Power & Energy Systems, 125, 106471. https://doi.org/10.1016/j.ijepes.2020.106471
Subramanium, L., Hassan, S., Osman, Mohd. H., & Zulzalil, H. (2025). Reliability Risk Assessment Approaches in Software Engineering: A Review Structured by Software Development LifeCycle (SDLC) Phases and Reliable Sub-Characteristics. International Journal of Advanced Computer Science and Applications, 16(9). https://doi.org/10.14569/IJACSA.2025.0160910
Taheri, N., Jahani, H., & Pishvaee, M. S. (2024). Modeling sustainable bioethanol supply chain in Australia: A system dynamics approach. Renewable Energy, 227, 120481. https://doi.org/10.1016/j.renene.2024.120481
Taheri, N., Pishvaee, M. S., & Jahani, H. (2025). A robust multi-objective optimization model for grid-scale design of sustainable cropping patterns: A case study. Computers & Industrial Engineering, 200, 110772. https://doi.org/10.1016/j.cie.2024.110772
Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. https://doi.org/10.1057/palgrave.jors.2601589
Wang, X., Dong, Z., & Sušnik, J. (2023). System dynamics modelling to simulate regional water-energy-food nexus combined with the society-economy-environment system in Hunan Province, China. Science of the Total Environment, 863, 160993. https://doi.org/10.1016/j.scitotenv.2022.160993
Wu, J., Zhang, L., Bai, Y., & Reniers, G. (2022). A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory. Reliability Engineering & System Safety, 221, 108331. https://doi.org/10.1016/j.ress.2022.108331
Yang, C., Sun, Y., Zou, Y., Zheng, F., Liu, S., Zhao, B., Wu, M., & Cui, H. (2023). Optimal Power Flow in Distribution Network: A Review on Problem Formulation and Optimization Methods. Energies, 16(16), 5974. https://doi.org/10.3390/en16165974
Zhang, Y., Karve, P. M., & Mahadevan, S. (2024, July). Power grid operational risk assessment using graph neural network surrogates. In 2024 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. https://doi.org/10.1109/PESGM51994.2024.10688788
Zio, E. (2016). Challenges in the vulnerability and risk analysis of critical infrastructures. Reliability Engineering & System Safety, 152, 137–150. https://doi.org/10.1016/j.ress.2016.02.009