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Objective: Freight costs constitute a significant share of total supply chain expenses and
play a critical role in operational efficiency and sustainability. Accurate freight cost
forecasting is therefore essential for effective logistics planning and sustainable supply
chain management. This study aims to develop a robust forecasting framework to
improve the accuracy of freight cost prediction in real-world supply chain systems.

Methods: This research proposes a hybrid forecasting model that integrates a Gated
Recurrent Unit (GRU) neural network with a Genetic Algorithm (GA) for
hyperparameter optimization. The GRU model captures temporal dependencies in
freight cost time-series data, while the GA optimizes key hyperparameters, including
the number of neurons and dropout rate, by minimizing Mean Absolute Error (MAE).
The model is trained and evaluated using a real-world healthcare supply chain dataset.
Its performance is benchmarked against traditional statistical models, including
Autoregressive (AR) and ARIMA models.

Results: The experimental results demonstrate that the proposed GRU-GA model
significantly outperforms the benchmark models in terms of forecasting accuracy. The
optimized GRU structure achieves lower MAE values compared to AR, ARIMA, and
non-optimized deep learning models, indicating superior capability in modeling
nonlinear and complex temporal patterns inherent in freight cost data.

Conclusion: The findings confirm that integrating evolutionary optimization with deep
recurrent neural networks substantially enhances freight cost prediction performance.
Improved forecasting accuracy can support better transportation planning, reduce
operational inefficiencies, and contribute to economic, environmental, and social
sustainability in supply chains. The proposed GRU-GA framework is flexible and can
be extended to other logistics and transportation forecasting applications.
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1. Introduction

With the growth of the internet, the creation of more online stores, and an increase in online transactions, logistics
have also become more active, leading to the growth of logistics-based businesses. With the outbreak of COVID-19
in 2020, people staying at home, and the rise in non-presential and online purchases, this trend has become more
pronounced. By August 2020, the volume of traffic and vehicles used for transporting goods had increased compared
to 2019 (Jang et al., 2023). This highlights the importance of freight, as market-induced freight can easily stimulate
urban logistics.

On the other hand, freight costs, as one of the components of the supply chain, play an important role in the
performance and sustainability of the supply chain. Ultimately, improving and reducing freight costs can help improve
the environmental, economic, and social sustainability of supply chain systems.

From an environmental perspective, reducing freight costs can improve supply chain sustainability in various ways,
including:

1. Less fuel consumption and fewer pollutant emissions: A significant portion of freight costs is related to fuel
consumption. The use of fossil fuels in freight leads to the emission of greenhouse gases and air pollution,
which have detrimental effects on the environment.

2. Optimal freight mode selection: Choosing freight modes with lower energy consumption, such as rail or
maritime transport instead of road transport, can reduce pollutant emissions and improve environmental
sustainability.

3. Route optimization: Using routing and freight planning software, routes can be optimized to reduce fuel
consumption and emissions.

4. Better packaging: Lighter and recyclable packaging can help reduce weight, freight costs, and fuel
consumption.

From an economic perspective, reducing freight costs can improve supply chain sustainability in various ways,
including:

1. Overall cost reduction: Lower freight costs can lead to reduced overall supply chain costs and increased
profitability for companies.

2. Increased productivity: Optimizing routes, reducing freight time, and using new technologies can help
increase supply chain productivity.

3. Increased customer satisfaction: Providing faster and more reliable freight services can help increase
customer satisfaction.

From a social perspective, reducing freight costs can improve supply chain sustainability in various ways,
including:

1. Supporting local communities: Using local freight services and supporting small local companies in this
sector can lead to the development of local communities.

2. Job creation: Developing sustainable freight infrastructure can help create jobs in different regions.

3. Worker safety: Improving working conditions and safety for workers can help improve the social status of
workers in the freight sector.
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On the other hand, better and more accurate prediction of freight costs can significantly increase sustainability in
the supply chain, and these two are interconnected. For reasons including:

1. Optimization of routes and modes of freight: With more accurate cost predictions, freight routes can be
optimized to be both cost-effective and environmentally friendly. For example, rail transport may be less
costly and cause less environmental harm than road transport.

2. Reduction of unnecessary freight: better prediction of freight costs, demand management, and inventory
levels can help avoid unnecessary freight. This not only reduces costs but also decreases fuel consumption
and hence pollutant emissions.

3. Selection of more sustainable suppliers: Knowing freight costs allows for the selection of suppliers who
produce and transport their products sustainably.

4. Better fleet management: By accurately predicting costs using shipment volumes and routes, the freight
fleet can be optimized, making the best use of vehicle capacities. This reduces costs, fuel consumption, and
increases the lifespan of vehicles.

5. Reduction of overall costs: Lower freight costs lead to lower overall supply chain costs. This allows
companies to invest more financial resources in sustainable technologies and improve production processes.

The conventional time-series methods of forecasting, such as the use of ARIMA models, are inadequate in
capturing the fundamentally complex, nonlinear, and dynamic behavior of freight markets. These markets are
influenced by a set of interacting variables: volatile fuel prices, changing almost overnight because of geopolitical
events or disruptions to supply chains; fluctuating economic conditions that have an impact on demand and shipment
volumes; global and regional geopolitical events that increase uncertainty and influence trade routes; seasonal demand;
technological advances in transportation; and changing regulatory environments. Most ARIMA models rely on linear
assumptions of the data and thus cannot capture these complex, usually unpredictable dynamics; hence, the models
tend to be less accurate in their forecasts.

On the other hand, deep learning techniques, especially RNNs and their more advanced variants such as Gated
Recurrent Units, have started to show promising alternatives in handling complex time-series data. RNNs are designed
to process sequential data by maintaining an internal state, enabling them to "remember" past information. It is
therefore particularly suitable for time-series forecasting, where a value at some point in time depends on its previous
values. GRUs extend the RNN architecture with gate mechanisms that can regulate the information flow and somewhat
alleviate the problem of vanishing gradients during training of traditional RNNs. These mechanisms for gating in
GRUs allow them to filter information over even longer sequences to capture long-range patterns, proving much more
practical and effective for time-series forecasts, such as freight costs, where history in the forms of trends or seasonal
cycles makes quite a lot of difference.

On the other side, this performance of the networks depends substantially on how good an appropriate choice of
their hyperparameters parameters which influence learning and changing network architecture or parameters-proves.
The set includes the number of layers, the number of neurons in each layer, the learning rate, batch size, the types of
activation functions, and various regularization parameters. Tuning these hyperparameters by trial and error is really
an inefficient and time-consuming method. It cannot very often give an optimal combination of these. In this paper,
GAs present a strong and efficient technique to optimize the aforesaid hyperparameters. Genetic algorithms take
inspiration from the principle of selection and evolution. They start by generating a population of candidate solutions;
in our context, this can be various sets of hyperparameters. They evaluate their performance using a fitness function
that could be forecasting accuracy, then evolve that population to higher quality using genetic operators like selection,
cross-over, and mutation. This allows GAs to efficiently scan the complex hyperparameter space and find that
combination leading to a large increase in the performance of the GRUs.
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This study proposes a hybrid model that combines GRU networks with a Genetic Algorithm for optimized freight
cost forecasting. The GRU network is used to model temporal dynamics and nonlinear relationships that exist within
freight cost data, while the GA optimizes the hyperparameters of the GRU toward the maximum forecasting accuracy
of the GRU. Next, the results of the suggested GRU-GA model, when compared strictly to the capture of the
conventional ARIMA, present superior performances for the description of the complexities of freight cost fluctuation.
This paper bases the conduct of its study on a real dataset related to logistical pricing; numerous similarities exist
among the Price and Quality Reporting and international transportation costs data developed by the Global Fund for
its health supply chains. This dataset has very detailed freight costs, which will allow a realistic assessment of the
performance of the model. Finally, the research discusses how improved forecasting accuracy may affect supply chain
sustainability by investigating how better cost predictions can lead to optimized logistics, reduced waste, and greener
transportation methods.

2. Literature Review

In a paper prepared by (Kovécs, 2017), road freight costs were calculated using factors such as distance, fuel, price,
and highway tolls. The Multiple Regression algorithm was used for this purpose. Following him, Sternad (2019)
attempted to identify the main influential factors and considered two types of costs: fixed costs related to the vehicle
and driver, and variable costs such as fuel.

Khajeh et al., (2023) presented three innovative methods for predicting freight rates and conducted a comprehensive
analysis in a paper. Their innovative method included extracting and classifying disruptive events and using predictions
to improve freight. This study also considered external factors such as excess capacity and the impact of events like
COVID-19. Future studies for this research include completing and further improving container transport rate
prediction methods.

Diaz-Ramirez et al., (2023) provided a new approach to freight prediction using soft facts. Soft facts are indices
extracted from expert surveys regarding their sentiments, beliefs, or perceptions of current and future market
developments. An integrated moving average with an autoregressive (ARIMA) model was used as the baseline, and
the results were compared with ARIMAX and VAR models.

Diaz-Ramirez et al., (2023) reviewed several decades and showed that policymakers have supported modal shift in
the freight sector as an important basis for achieving greenhouse gas reduction targets in freight. The results showed
that while modal shift policies have effectively increased the share of rail and sea transport in Sweden, the actual
impact of this shift on emission reduction is limited. Several factors influence this, including the high level of
carbonization of road transport and the low emission intensity of road transport in Sweden. The study ultimately
demonstrated that challenges related to modal shift, such as infrastructure limitations and increased costs for some
industries, exist, and suggests that merely focusing on modal shift as an emission reduction strategy may not be the
most efficient approach. Instead, moving toward other strategies, such as the use of electricity and electric vehicles, as
well as fuel efficiency, should be considered.

Ehtesham Rasi & Sohanian, (2020) in the “A multi-objective optimization model for sustainable supply chain
network with using genetic algorithm”, developed a mixed-integer linear programing (MILP) model to incorporate
economic and environmental data for multi-objective optimization of the sustainable supply chain network network.
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Tas et al., (2013) drived studies for a vehicle routing problem with soft time windows and stochastic travel times.
This paper addresses the sustainable vehicle routing problem, considering factors like fuel consumption, emissions,
and traffic congestion. A model is developed that considers both transportation costs (total distance traveled, number
of vehicles used and drivers' total expected overtime) and service costs (early and late arrivals). They propose a Tabu
Search method to solve this model.

Tang et al., (2020) had a study. This study explores how growth in environmental sustainability has influenced the
logistics industry to pursue sustainable development, with carbon tax policies being a key approach to reducing
emissions. The research aims to optimize sustainable transportation and inventory under a carbon tax policy and finds
ways to balance the interests of governments and businesses. Using a Stackelberg game model and a three-stage
dynamic game model, the study seeks to optimize transportation costs, carbon tax rates, and sustainable investments.
Simulations indicate that while carbon tax policies improve social welfare and sustainability, they may reduce
corporate profits. However, sharing sustainable investments between governments and businesses can mitigate these
drawbacks and yield positive outcomes for both parties.

Mao et al., (2023) proposed a study which designs a reverse logistics network for express packaging recycling in
China to address environmental pollution and resource waste. Using K-means and NSGA-I1 algorithms, the researchers
optimized the selection of recycling and processing centers to minimize costs and carbon emissions. The solutions
were categorized based on priority for cost or environmental benefits. The findings suggest that with proper planning
and algorithmic support, sustainable logistics networks can be effectively designed to balance economic and
environmental considerations.

Panigrahi et al., (2019) in “Sustainable supply chain management: A review of literature and implications for future
research” discussed crucial issues about sustainable supply chain and minimizing negative impacts on the environment,
society, and economy.

Sanchez-Flores et al., (2020) made a review on emerging economies in sustainable supply chain. This article
reviews global literature on SSCM in emerging economies, analyzing 56 articles from 2010 to April 2020. The study
highlights that while interest in SSCM is increasing, research in emerging economies lags behind that in developed
ones. The context of developing countries is crucial in empirical studies, and integrating the three dimensions of
sustainability is vital for enhancing supply chain performance. The article also identifies limitations and suggests future
research opportunities, particularly in supply chain functions like collaboration, sustainable practices innovation, and
supplier development.

Recent research on freight cost prediction increasingly leverages advanced time-series models and machine
learning—based methods to address complex, nonlinear dynamics. For instance, Saeed et al., (2023) applied the Prophet
forecasting method to container freight rates while explicitly incorporating disruptive events, achieving notable gains
over classical ARIMA models. Comparative studies show that models like LSTM-GA and CNN-GA consistently
outperform their non-optimized counterparts, substantiating the value of evolutionary metaheuristics in
hyperparameter tuning (Wang et al., 2023). Although previous work has largely focused on single-objective
optimization or domain-specific contexts, our approach generalizes the paradigm by integrating GRU-GA for diverse
real-world freight operations while emphasizing interpretability and sustainability impacts. This synthesis highlights
both the advances and current limitations in the field, providing the rationale for the architecture and methods selected
in this study.
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3. Methodology

In this research, a real-world dataset has been used. This dataset provides data related to the freight of health supply
chain goods. Additionally, it includes pricing and related supply chain costs for transporting goods to countries. This
dataset has fields similar to the Price, Quality, and Reporting (PQR) data of the Global Fund and includes 10,325
observations and 33 features.

Firstly, features not related to freight costs were removed, and variables related to the target variable were kept for
the following reasons:

e Reducing model complexity: The fewer the inputs of a model, the simpler the model becomes, and the
likelihood of overfitting decreases. Overfitting refers to excessive learning of details, causing poor model
performance on new, unseen data.

e Improving training speed: By reducing the number of variables, training time improves due to less data
processing.

e Improving model interpretability: By removing irrelevant variables, the final model becomes more
understandable, and the relationship between input and output variables can be easily analyzed.

e Reducing noise: Irrelevant variables can act as noise in the data, reducing model accuracy. By removing
these variables, the main signal strengthens, allowing the model to better identify patterns in the data.

In this research, we used the correlation method for this purpose. In this method, the correlation coefficient between
each variable and the target variable (freight cost) is calculated. Variables with zero or low correlation are likely
irrelevant and are removed from the dataset used for training.

Next, we address outlier data, which refers to data significantly different from other data points. Outliers can be
due to data collection errors, measurement noise, or abnormal phenomena in the data. We remove or correct outliers
for the following reasons:

e Reducing model impact: Outliers can significantly impact model performance, affecting mean, standard
deviation, and other statistics, leading to incorrect results.

e Improving model accuracy: Models trained with outliers may have lower accuracy in predicting new data.

o Identifying real patterns: Removing outliers helps in identifying real patterns in the data.

We used a distance-based method to identify outliers. In this method, data points whose distance from the mean
exceeds three standard deviations are considered outliers.

Next, we deal with missing data, a common challenge in data analysis, caused by human error, technical issues in
data collection, or non-response. We used the observation deletion method, which is simple and removes rows
containing missing values. Given the low percentage of missing data, this method is appropriate.

For model stability, 70% of the dataset was allocated for training, and the remaining 30% for testing.

In this study, a Genetic Algorithm (GA)-optimized Gated Recurrent Unit (GRU) model for time series prediction
is proposed. The methodology consists of three main components: data preprocessing, hyperparameter optimization
using Genetic Algorithm, and final model training and evaluation.
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3.1. Data Preprocessing
3.1.1 Data Preparation

The dataset is first loaded and preprocessed to ensure data quality. Missing values are removed to prevent
inconsistencies in training. The dataset consists of multiple features representing historical input variables, with the
target variable being the prediction output. The feature set X is separated from the target variable Y.

3.1.2 Data Splitting

To evaluate the model’s generalization capability, the dataset is split into training and testing sets using 70-30 ratio.
The training set is used for model training, while the test set is reserved for performance evaluation.

3.1.3 Data Normalization

Since neural networks perform better when input features are scaled within a uniform range, MinMax normalization

is applied to transform the input variables between [0,1]. The transformation is performed as follows:
X — X
Xscaled = Ximm

max ~ Xmin

Where X,,.. and X,,;, are the maximum and minimum values of each feature, respectively. The same
transformation is applied to both training and test sets to maintain consistency.

3.1.4 Data Reshaping for GRU Input

Since the GRU model expects sequential data, the training and test sets are reshaped into three-dimensional tensors
with the shape (samples, timesteps, features), where:

e Samples represent the number of data points

e Timesteps indicate the time dependency in sequences

e Features denote the number of input variables
This transformation ensures that the model can capture temporal dependencies effectively.
3.2. Hyperparameter Optimization Using Genetic Algorithm (GA)

Given the importance of hyperparameters in the performance of GRU models, a Genetic Algorithm (GA) is employed
to optimize two key hyperparameters:

e Number of neurons (n) in the GRU layer
e Dropout rate (d) to prevent overfitting

GA is a population-based optimization technique inspired by natural selection, where the fittest individuals are selected
and evolved over multiple generations. The process consists of the following steps:

3.2.1 Chromosome Representation
Each individual in the GA population represents a possible configuration of the GRU model’s hyperparameters:
e n (number of neurons): an integer between [1, 100]

e d (dropout rate): a float between [0, 0.5]
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Each individual (or solution) is represented as a chromosome in the form of:
li=(ni, di)

Where n; and d; are the respective values for the i" individual.

3.2.2 Initial Population Generation

An initial population of N individuals is randomly generated. Each individual is assigned random values within the
predefined hyperparameter bounds.

3.2.3 Fitness Function Evaluation

Each individual’s performance is assessed using a fitness function, which trains a GRU model with the given
hyperparameters and evaluates its Mean Absolute Error (MAE) on the test set. The steps for fitness evaluation are as
follows:

e Construct a GRU model with the individual’s hyperparameters (n:,d:).

e Train the model on the training set (Xtrain,Ytrain) for a small number of epochs (E=10) to speed up the
optimization process.

e Predict the output values y; on the test set Xtest.

e Compute the MAE between predicted and actual values:

1
MAE = = [y = 9
Where n is the total number of test samples.
e Assign the MAE as the fitness score (lower values are better).

3.2.4 Selection

The selection process uses tournament selection to choose parents for reproduction. In each tournament, three
individuals are randomly chosen, and the one with the lowest MAE (best performance) is selected.

3.2.5 Crossover

Selected parents undergo blend crossover, where offspring are generated by averaging the parents' hyperparameters
with some randomness to introduce diversity. This allows for the exploration of new solutions while maintaining
inherited properties from high-performing individuals.

3.2.6 Mutation

To further enhance diversity, Gaussian mutation is applied, which slightly perturbs the hyperparameter values by
adding a small normally distributed noise. Mutation occurs with a probability P to prevent premature convergence to
suboptimal solutions.

3.2.7 Iterative Evolution

The population evolves over G generations, with each iteration involving selection, crossover, and mutation. The best
individuals are preserved for the next generation.

3.2.8 Best Solution Extraction

After evolution is complete, the best individual I*=(n*d*) with the lowest MAE is selected as the optimal
hyperparameter set.
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3.3 Final Model Training and Evaluation
3.3.1 Model Training

Using the optimized hyperparameters (n*,d*), a final GRU model is trained on the entire training dataset for Ef=50
epochs to ensure sufficient learning. The training process involves backpropagation and Adam optimization to
minimize the Mean Squared Error (MSE).

3.3.2 Model Prediction and Evaluation

The trained model is used to predict outputs on the test set, and its performance is evaluated using MAE. The final
MAE score is reported as the model’s performance metric.

This research applies a GRU neural network to the dataset. Then, using a genetic metaheuristic algorithm, this
algorithm is optimized. The optimization objective function is MAE, and the pseudo-code of this algorithm is as
follows:

Pseudo-Code for Genetic Algorithm-Optimized GRU Model
Algorithm 1: GRU Hyperparameter Optimization Using Genetic Algorithm
Input:
e Dataset (D)
e Population size (N)
e Number of generations (G)
e Crossover probability (Pc)
e Mutation probability (Pm)
Output:
e Optimized GRU model with the best number of neurons and dropout rate

1. Data Preprocessing

Load dataset (D)
e Remove missing values
e Separate features (X) and target variable (Y)
e Split data into training set ((X_{train}, Y_{train})) and testing set ((X_{test}, Y_{test}))
e Normalize (X_{train}) and (X_{test}) using MinMaxScaler
e Reshape (X_{train}) and (X_{test}) into three-dimensional tensors for GRU input
2. Genetic Algorithm Initialization
e 2.1 Define search space:
- Number of neurons (nin [1, 100])
- Dropout rate (d in [0, 0.5])
e 2.2 Generate initial population (P) of size (N), where each individual (I;) is represented as (I; = (n;, di))

e 2.3 Evaluate the fitness of each individual using Algorithm 2.
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Algorithm 2: Fitness Evaluation
Input: Individual (I; = (ni, d;))
Output: Fitness score (MAE)
Begin
1. Create a GRU model with (n;) neurons and dropout rate (di)
2. Train the model on ((X_{train}, Y_{train})) for (E) epochs
3. Predict (Y_{pred}) on (X_{test})
4. Compute Mean Absolute Error (MAE) between (Y_{test}) and (Y_{pred})
5. Return MAE as fitness score
End
3. Evolutionary Process
For each generation (g) in (G) do:
e 3.1 Selection: Select parents using tournament selection
e 3.2 Crossover: Apply blend crossover with probability (Pc) to generate offspring
e 3.3 Mutation: Apply Gaussian mutation with probability (Pm)
e 3.4 Ensure neurons and dropout remain within bounds
e 3.5 Evaluate fitness of new population using Algorithm 2
e 3.6 Replace current population with new population
4. Model Training with Best Parameters
e 4.1 Select the best individual (I* = (n*, d*)) from the final population
e 4.2 Train a final GRU model with (n*) neurons and dropout rate (d*) for (Ef) epochs
e 4.3 Evaluate the final model on (X_{test})
e 4.4 Report the final MAE
End of Algorithm
4. Numerical Results

This section presents the numerical results obtained from the experiments conducted using the proposed GRU-GA
model for freight cost forecasting. The model's performance is evaluated and compared against the benchmark
ARIMA model. The primary performance metric used is the Mean Absolute Error (MAE), which measures the average
absolute difference between the predicted and actual freight costs. Lower MAE values indicate better forecasting
accuracy.

Additionally, the results from the proposed GRU-GA algorithm are compared against those obtained from GRU,
ARIMA, and AR models, demonstrating the improvements achieved by the proposed algorithm.
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This study utilizes a freight pricing dataset from the health supply chain. This dataset contains information
regarding freight and pricing for health supply chain goods, specifically focusing on the shipment of antiretroviral
(ARV) drugs and HIV laboratory supplies to recipient countries. Critically, the dataset includes not only the price of
the goods themselves, but also the associated supply chain costs incurred in delivering these goods internationally.
This data shares structural similarities with the Price, Quality, and Reporting (PQR) data maintained by the Global
Fund. Given that PEPFAR and the Global Fund are the two largest procurers of HIV health commodities, this dataset,
when analyzed in conjunction with PQR data, offers a more holistic understanding of global costs associated with
these essential health goods. This comprehensive view is particularly valuable for discerning pricing ranges,
identifying cost trends, and analyzing the volume of products delivered to individual countries. The United States
government has recognized the potential of this data to empower stakeholders in making more informed, data-driven
decisions. However, it is important to acknowledge that contextual factors, specific to each country and supply chain,
should be carefully considered when interpreting and utilizing this database.

4.1 Overall Performance Comparison

To further investigate the performance of the proposed GRU-GA model, we compared its performance with
conventional time series models (AR, ARIMA) and two basic deep learning models: conventional GRU and LSTM -
neither of which use hyperparametric metaheuristic optimization. The results are presented in Table 1, which shows
the mean absolute error (MAE) of each method on the test set along with the relative improvement percentage.

Table 1. Model Performance Comparison (MAE and Relative Improvement)

Model MAE Improvement vs. AR (%) Improvement vs. ARIMA (%)
AR 16,219.15 - -

ARIMA 13,631.63 15.95 -

LSTM 11,823.70 27.12 13.27

Vanilla GRU 11,350.20 30.02 16.72

GRU-GA 10,546.75 34.97 22.63

As shown in Table 1, both deep learning models (LSTM and vanilla GRU) clearly outperform classical AR and
ARIMA, highlighting their superiority in modeling complex, nonlinear temporal dependencies inherent in freight cost
data. Notably, the proposed GRU-GA model achieves the lowest MAE among all methods, delivering a 22.63%
improvement over ARIMA and a 34.97% improvement over AR. Furthermore, GRU-GA outperforms vanilla GRU
and LSTM by 7.08% and 6.88% respectively, underscoring the added predictive value of the genetic algorithm
optimization step.

This performance gap illustrates the crucial impact of metaheuristic hyperparameter tuning: while deep learning
architectures possess the capacity to model dynamic cost patterns, their full potential is realized only when optimally
configured for the task at hand. By allowing the GA to automatically explore the hyperparameter space, the GRU-GA
approach consistently converges to network configurations that would be unlikely to emerge from manual tuning or
default settings.
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It is also worth noting that this gain in predictive accuracy comes at a reasonable computational cost. All training
and optimization steps were conducted on an Intel Core i5 CPU with 8GB RAM, with the full GRU-GA process (100
generations, moderate population size) completing in approximately 10 minutes—well within practical bounds for
many real-world forecasting environments. This trade-off between increased forecast accuracy and practical cost
demonstrates the practical applicability of the proposed hybrid framework for supply chain decision-makers.

In summary, these comprehensive results demonstrate that the GRU-GA model not only outperforms traditional
and deep learning benchmarks in terms of forecast accuracy, but also does so with manageable resource requirements.
This establishes GRU-GA as a robust and scalable tool for reliable freight cost forecasting in complex and realistic
logistics scenarios.

4.2 Impact of GA Optimization
To illustrate the impact of the GA optimization, Figure 1 shows the convergence of the GA during the hyperparameter

search process. It plots the best fitness (lowest MAE) achieved by the population over generations.

+1.102e4 Convergence of Genetic Algorithm

7.6 1

7.4 1

7.2 A

7.0 A

Best MAE

6.8

6.6

6.4

2z 4 [¥] 8 10
Generation

Figure 1. Convergence of the GA during hyperparameter optimization

The vertical axis in this chart represents the best Mean Absolute Error (MAE) value in each generation of the
Genetic Algorithm. The MAE is a measure of the difference between the predicted and actual values, and is measured
in dollars. The base number is 1.102 x 1074 (i.e., about 11020), and the values shown represent the variations of this
value. The hyperparameters that were optimized by the Genetic Algorithm were the number of neurons in the GRU
layer and the dropout rate. The number of neurons was allowed to vary between 1 and 100, and the dropout rate was
allowed to vary between 0 and 0.5. The Genetic Algorithm was run for 100 generations, and the best MAE value in
each generation is shown in the chart.
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As seen in Figure 1, the MAE decreases significantly over the generations, indicating that the GA effectively
explores the hyperparameter space and finds increasingly better configurations for the GRU network. This highlights
the importance of the GA optimization in enhancing the model's performance.

5. Conclusion

This study introduces a novel hybrid forecasting framework that synergistically integrates GRU recurrent units (GRUS)
with a genetic algorithm (GA) to improve the accuracy of transportation cost forecasting, a key determinant of supply
chain sustainability. Mixing the time modeling capability of GRUs and global search optimality of evolutionary
algorithms, the ensuing GRU-GA model outperformed considerably both conventional statistical models (AR,
ARIMA) and individual deep learning models (LSTM, simple GRU), with the highest mean absolute error (MAE) on
all metrics.

In addition to the technical quality, this model has deep real-world significance for sustainability and logistics
planning. Accurate transport cost forecasting enables logistics planners to optimize transportation routes, select cleaner
transport modes, reduce operational inefficiencies, and actively manage inventories ahead of time. All of these map
directly to the three pillars of sustainability: environmental (through reduced greenhouse gas emissions and fuel
consumption), economic (through cost savings and efficiency), and social (through improved service reliability and
labor outcomes).

While the current application is built with healthcare supply chain transportation data, its methodological
underpinnings are generalizable. Future work might build on the framework by introducing exogenous variables such
as macroeconomic shocks, geopolitical tensions, or weather shocks. Further research might also compare with other
optimization methods such as particle swarm optimization (PSO), Bayesian optimization, or hybrid ensembles—and
increase predictive robustness and interpretability of the model. Finally, incorporating the GRU-GA system into
decision support systems can enable real-time feedback to stakeholders and enable adaptive counter-responses to
developments in global logistics networks.

In conclusion, not only does the GRU-GA method improve the state of the art in the prediction of transportation
cost, but it also illustrates how Al-based hybrid architecture can be effective enabler of sustainable, data-driven
decision-making in supply chains.
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